

1.máje 432, CZ-735 31 Bohumín, Czech Republic e-mail: <u>info@spl-labmat.cz</u>, <u>www.spl-labmat.cz</u>, phone: +420 596 014 627

CERTIFICATE OF CHEMICAL ANALYSIS No 01 – 21

LOW ALLOY STEEL for solid sample spectrometry, combustion and wet-way methods

SPL CM-25A (PT 29/1A)

Element	Value	Uncertainty						
Liement	[%wt.]	[%wt.]						
С	0.097	0.002						
Mn	0.781	0.004						
Si	0.656	0.008						
Р	0.0036	0.0006						
S	0.0051	0.0004						
Cu	0.0040	0.0004						

CERTIFIED VALUES – Mass content in %wt.

Element	Value	Uncertainty							
Liement	[%wt.]	[%wt.]							
Cr	0.0248	0.0006							
Ni	0.0214	0.0006							
Al	0.0030	0.0006							
W	0.0048	0.0020							
V	0.0161	0.0006							
Ν	0.0061	0.0004							

PARTICIPATING LABORATORIES:

ARCELORMITTAL Avilés (Asturias), Spain ARCELORMITTAL Gijón (Asturias), Spain ARCELORMITTAL Warszawa, Poland BONATRANS, Czech Republic BRITISH STEEL, United Kingdom CMC Poland, Poland COGNOR S.A. - Ferrostal Łabędy, Poland COGNOR S.A. - HSJ, Poland COMTES, Czech Republic ČEZ - JE Temelín, Czech Republic ČZ, Czech Republic DEFEKTA NDT, Czech Republic DILLINGER, Germany DUNAFERR Labor Nonprofit, Hungary ENVIFORM, Czech Republic ERÉGLI DEMIR, Turkey FERROMET, Czech Republic GO STEEL, Czech Republic

JSC Moldova Steel Works, Moldova LIBERTY Częstochowa, Poland LIBERTY Ostrava, Czech Republic MM VÝZKUM, Czech Republic MS UTILITIES & SERVICES, Czech Republic OCAS NV, Belgium ORLEN UNIPETROL RPA, Czech Republic SSAB EMEA, Sweden ŠKODA AUTO, Czech Republic TATA STEEL IJMUIDEN, Netherlands TÜV NORD Czech, Czech Republic ÚJV ŘEŽ, Czech Republic VOESTALPINE STAHL, Austria VZÚ PLZEŇ, Czech Republic Z - GROUP - Ocelárna Hrádek, Czech Republic ZPS - SLÉVÁRNA, Czech Republic ŽĎAS, Czech Republic ŽELEZIARNE PODBREZOVÁ, Slovakia

Method	С	Method	Mn	Method	Si	Method	Р	Method	S	Method	Cu	Method	Cr	Method	Ni	Method	AI	Method	w	Method	v	Method	N
IR	0,089							AES	0,0040														í
IR	0,090							IR	0,0041														-
IR	0,092								0,0042														
IR	0.093							AES	0 0044														
IR	0,093							IR	0,0045														
AES	0,094							AES	0,0045														
IR	0,094	ICP	0,759					IR	0,0045														
IR	0,094	AES	0,764					IR	0,0045														í
AES	0,094	AES	0,765	AES-m.	0,616			AES	0,0046														I
AES	0,094	AES	0,767	ICP	0,618			AES	0,0046			ICP	0.0174*	AES	0.0164					ICP	0.0127		
IR	0,094	ICP	0,769	AES	0,628				0,0040			ICP	0.0225	AES	0.0178					AES	0.0127		
IR	0.095	AES	0.770	XRF	0.630	AES	0.0009	IR	0.0046			AES	0.0230	XRF-m.	0.0181					ICP	0.0143		
IR	0,095	ICP	0,771	AES	0,634	AES-m.	0,0010	AES	0,0046			ICP	0,0230	AES	0,0189					AES	0,0144		1
IR	0,095	Titrimetric	0,772	ICP	0,635	AES-m.	0,0016	AES	0,0047			ICP	0,0231	AES	0,0190					AES	0,0146		
IR	0,095	AES	0,772	AES	0,635	AES	0,0020	IR	0,0047			XRF	0,0231	AES-m.	0,0195					AES	0,0148		
IR	0,095	AES-m.	0,774	AES	0,635	AES	0,0024	AES-m.	0,0048	ICP	0,0007*	ICP	0,0232	AES	0,0196					AES	0,0148	AES	0,0050
AES-m.	0,096	AES	0,774	AES	0,641	ICP	0,0024	AES-m.	0,0048	AES-m.	0,0024	AES	0,0235	ICP	0,0196					AES	0,0150	AES	0,0052
AES	0,096	AES	0,775	AES	0,645	AES	0,0025		0,0049	AES	0,0025	AES	0,0236	AES	0,0205					ICP	0,0152	TCM	0,0053
IR	0.096	AES	0.775	AES	0.645	AES	0.0030	IR	0.0049	AES	0.0028	AES	0.0236	AFS	0.0205					AES	0.0153	TCM	0.0054
AES	0.097	AES-m.	0.776	AES	0.646	AES	0.0030	AES	0.0050	AES	0.0028	AES	0.0237	ICP	0.0207					AES	0.0156	AES	0.0055
AES	0,097	XRF-m.	0,776	AES	0,648	AES	0,0030	IR	0,0050	AES	0,0032	AES	0,0239	AES	0,0210	ICP	0,0007			AES	0,0156	TCM	0,0055
AES	0,097	AES-m.	0,777	AES	0,650	AES	0,0031	IR	0,0050	XRF	0,0032	AES	0,0240	AES	0,0210	AES	0,0014			ICP	0,0156	AES	0,0056
IR	0,097	ICP	0,777	Gravim.	0,650	AES	0,0031	IR	0,0051	AES	0,0033	AES	0,0241	AES	0,0211	AES	0,0018			AES	0,0158	TCM	0,0057
AES	0,097	XRF-m.	0,778	ICP	0,654	AES	0,0032	AES	0,0051	ICP	0,0036	AES	0,0242	AES	0,0212	AES	0,0019			AES-m.	0,0158	IR	0,0057
AES	0,098	AES	0,778	AES-M.	0,655	AES	0,0032	AES	0,0051		0,0037	AES-M.	0,0242	AES	0,0213	AES	0,0020			AES	0,0158	AES	0,0057
IR	0,098	AES	0,779	ICP	0,655	ICP	0,0032	AES	0,0052	ICP	0,0037	AES	0,0245	AES	0,0214	AES-III.	0,0020			XRE	0,0159	AES	0,0058
AES	0.098	ICP	0.780	AES	0.657	AES	0.0033	IR	0.0052	AES	0.0038	AES	0.0248	AES	0.0214	AES	0.0021			AES	0.0160	AES	0.0058
IR	0,098	AES	0,780	AES	0,657	AES	0,0034	AES	0,0052	AES	0,0039	AES	0,0249	AES	0,0216	AES	0,0022			AES	0,0160	TCM	0,0059
AES	0,098	ICP	0,781	AES	0,658	AES	0,0035	AES	0,0052	AES	0,0040	AES	0,0250	ICP	0,0216	AES	0,0022			AES	0,0160	TCM	0,0059
IR	0,099	AES	0,781	AES-m.	0,659	AES	0,0035	AES	0,0052	AES	0,0040	AES	0,0250	AES	0,0216	AES	0,0025			AES	0,0163	AES	0,0060
IR	0,099	AES	0,781	AES	0,660	AES	0,0035	IR	0,0052	AES	0,0040	AES	0,0251	AES	0,0217	AES	0,0027			AES	0,0163	IR	0,0060
	0,099		0,781	AES	0,660	AES	0,0035		0,0052	AES	0,0041		0,0251	AES	0,0217	AES	0,0028			AES	0,0164	TCM	0,0060
AES	0,099	AES	0,781	AES	0,001	ICP	0,0030	AES	0,0052	AES	0.0042	AES	0.0257	AES	0,0218	AES-m	0,0028	AES	0 0010	ICP	0.0164	TCM	0,0001
IR	0,100	AES	0,783	AES	0,662	ICP	0,0038	IR	0,0053	AES	0,0043	AES	0,0253	AES	0,0220	AES	0,0028	AES	0,0014	AES-m.	0,0164	TCM	0,0062
AES	0,100	AES	0,784	Gravim.	0,663	AES	0,0038	AES	0,0053	AES	0,0043	ICP	0,0254	AES	0,0220	ICP	0,0029	AES	0,0017	AES	0,0165	AES	0,0063
AES	0,100	AES	0,786	AES	0,664	ICP	0,0038	AES	0,0053	AES	0,0044	AES	0,0256	AES	0,0221	AES	0,0030	AES	0,0017	AES	0,0166	AES	0,0064
IR	0,100	AES	0,786	AES	0,665	AES	0,0041	IR	0,0053	AES	0,0044	AES	0,0256	AES	0,0221	AES	0,0030	AES	0,0020	AES	0,0167	TCM	0,0064
AES	0,100	AES	0,788	AES	0,665	AES	0,0041	AES	0,0054	ICP	0,0044	AES	0,0256	AES	0,0222	AES	0,0032	AES	0,0021	ICP	0,0168	TCM	0,0064
AES	0,101	AES	0,791	AES	0,668	AES	0,0042	IR	0,0055	AES	0,0044	AES	0,0256	AES-m.	0,0222	AES	0,0033	AES	0,0031	XRF-m.	0,0169	AES	0,0065
IR	0,101	AES	0,793	AES	0 671	AES-m	0,0042	IR	0,0055	AES	0.0047	AES	0.0258	AES	0.0225	AES	0.0037	AES	0,0034	AES	0.0170	AES	0,0005
AES	0.101	AES	0.793	AES	0.673	AES	0.0042	IR	0.0056	AES-m.	0.0048	ICP	0.0258	AES	0.0227	ICP	0.0037	AES	0.0051	AES	0.0170	AES-m.	0.0065
AES	0,102	AES	0,795	AES	0,676	AES	0,0043	ICP	0,0057	ICP	0,0048	AES	0,0258	ICP	0,0227	AES-m.	0,0038	AES-m.	0,0056	AES-m.	0,0172	AES	0,0066
AES-m.	0,103	AES	0,796	AES	0,678	AES	0,0043	AES	0,0058	AES	0,0048	AES-m.	0,0258	AES-m.	0,0228	AES	0,0038	XRF	0,0066	AES	0,0172	AES	0,0066
AES-m.	0,103	AES	0,799	AES	0,681	AES	0,0044	AES	0,0060	AES	0,0050	AES	0,0260	AES	0,0230	AES	0,0041	AES	0,0070	AES	0,0175	TCM	0,0066
AES	0,104	AES	0,802	XRF-m.	0,688	AES	0,0054	IR	0,0062	AES	0,0050	AES	0,0262	XRF	0,0231	AES	0,0043	AES	0,0081	AES	0,0180	TCM	0,0067
AES	0,105	AES	0,802	AES	0,689	AES	0,0061	IR AES m	0,0062	AES	0,0052	AES	0,0266	AES	0,0234	AES	0,0047	AES	0,0087	AES	0,0182	AES	0,0067
AES	0.114*	AES	0,805	AES	0,094	AES	0.0067	AES-M.	0.0066	ICP	0.0074*	AES	0.0207	ICP	0.0240	ICP	0.0055	AES	0.0110	AES	0.0184	AES	0.0074
1.20		7.20	2,000	,	2,.01	,	5,0001	,	3,0000	101	-,	,	3,02.2	101	3,0231		-,	,	3,0.10	,	2,0.01	,	-,
	C		Mn		Si		P		S		Cu		Cr		Ni		AI		W		V		N
Value	0,097		0,781		0,656		0,0036		0,0051		0,0040		0,0248		0,0214		0,0030		0,0048		0,0161		0,0061
51	0,003		0.004		0.009		0,0014		0,0000		0,0008		0,0012		0,0007		0,0011		0.0020		0,0012		0,0000
U U	3,002		10,004		10,000		10,0000		10,0004	L	3,0004		0,0000		10,0000		0,0000		10,0020	1	0,0000		0,0004

CM-25A - ANALYTICAL DATA:

COMMENTS:

 $Value - reference value, s_M - standard deviation of intralaboratory means (* - result excluded as outlier)$

U – Uncertainty of the reference value $U \ge \pm \frac{t_{5;0,05}}{\sqrt{n}} \cdot s_M$ in the sense of the ISO Guide to the Expression of the

Uncertainty of Measurement (1993), dependent on the standard deviation of the laboratory results.

- **Certified** fully compliant with the ISO 17034 definition of Reference Material with the characterization for determining the property values and their associated uncertainties.
- **Intended** for calibration, matrix-match verification and statistical process control of low alloy steel spectrometric analysis from a plane of solid sample. They may not substitute CRM in a statement of metrological traceability, method validation. A single analysis area of at least 4 mm in diameter defines the minimum sample intake. They may be used for combustion and wet-way methods too.
- **Manufactured** by casting to a special ingot with discarding of the parts, which have been suspected inhomogenous and the rest has been machined to the samples of the ultimate size.

Supplied as discs 37 mm in diameter and 25 mm of standard height.

Homogeneity (random and trend, within- and between- samples) was tested by various analytical techniques of adequate repeatability. Its uncertainty contribution, when

statistically significant, was combined to the ultimate uncertainty statement. The RM are stable by a nature of material.

- **Characterised** by results from SPL proficiency test **PT 29/1A** laboratories by various spectrometric methods (AES spark, glow discharge, XRF) and alternative methods (combustion, thermoevolution, wet-way) standard methods, with measurements metrological traceabled to adequate CRM (CZ 2001, 2003 2008, 2015-2024, BAS, Brammer Standard). Identity of PT participating laboratories is confidential.
- **Certified values** in % m/m, tabulated below in bold, are robust means of a minimum five accepted laboratory means. They are rounded to the same digit as their uncertainty statement.
- **Uncertainty** is expressed as $a \pm half$ width interval combined from the standard uncertainty, expanded by the coverage factor k = 2 (corresponding to 95% level of confidence). It does not exceed 1,5 multiple of the typical uncertainty of the matching CRM.
- **Non-certified values** in regular without the uncertainty statement do not meet the requirements for certification and are intended for the matrix information.
- **User instruction:** the surface of the specimens and RM should be prepared in a similar manner in accordance with manufacturer's instructions of spectrometers. It is recommended to storage of RM in dry and non-corrosive conditions.

Produced by: SPL-LABMAT s.r.o.

Responsible person: Martin Bogumský

Issued in Bohumín in May 2021

SPL-LABMAT s.r.o. 1. máje 432 735 31 Bohumín, CZ IČO: 06480870, DIČ: CZ06480870 www.spl-abmat.cz e-mail: info@spl-labmat.cz